Journal of Organometallic Chemistry, 102 (1975) 49–56 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

DERIVATIVES OF CYCLOHEPTATRIENYLCYCLOPENTADIENYL-TITANIUM

H.T. VERKOUW*, M.E.E. VELDMAN, C.J. GROENENBOOM**, H.O. VAN OVEN and H.J. DE LIEFDE MEIJER*

Laboratorium voor Anorganische Chemie, Rijksuniversiteit, Zernikelaan, Groningen (The Netherlands)

(Received May 21st, 1975)

Summary

The syntheses of the ring-substituted sandwich complexes $(h^7-C_7H_7)-(h^5-R)Ti$ (R = C₅H₄C(CH₃)₃, C₅H₄Si(CH₃)₃, indenyl), $(h^7-C_7H_6C_6H_5)(h^5-C_5H_5)Ti$ and of the compound $(h^7-C_9H_9)(h^5-C_5H_5)Ti$ are described. The IR, NMR and mass spectra of the compounds are discussed.

Introduction -

Our studies on Ti complexes containing an h^7 -C₇H₇ ligand led to the isolation of the compounds $(h^7$ -C₇H₆R) $(h^5$ -C₅H₄R)Ti (R = H, CH₃) [1-3] and $(h^7$ -C₇H₇) $(h^5$ -C₇H₉)Ti [4]. The present paper describes the synthesis and some properties of the ring-substituted complexes $(h^7$ -C₇H₇) $(h^5$ -R)Ti (R = C₅H₄C-(CH₃)₃, C₅H₄Si(CH₃)₃, indenyl (= Ind)), $(h^7$ -C₇H₆C₆H₅) $(h^5$ -C₅H₅)Ti and of the compound $(h^7$ -C₉H₉) $(h^5$ -C₅H₅)Ti.

Experimental

All experiments were carried out under purified nitrogen. Solvents were purified by conventional methods and freed from oxygen before use by repeated degassing and saturating with nitrogen. Cycloheptatriene, indene, TiCl₄ and (CH₃)₃MCl (M = C, Si, Ge, Sn) were used without purification. The compounds C_7H_7R [5,6] (R = 7-C₆H₅, 3-OCH₃, 7-CN), (C₅H₅)TiCl₃ [7], (C₅H₅)TiCl₂ [8], (C₅H₅)M(CH₃)₃ (M = C, Si, Ge, Sn) [9], Na[C₅H₄M(CH₃)₃] (M = C, Si) [10], bicyclo[6.1.0] nonatriene (C₉H₁₀) [11] and lithium cyclononatetraenide (C₉H₉Li) [11,12] were prepared according to published procedures. The com-

* Present address: Koninklijke Shell Laboratorium, Amsterdam (The Netherlands).

^{**} Present address: AKZO Research Laboratories, Arnhem (The Netherlands).

pounds $Na[C_5H_4M(CH_3)_3]$ could not be obtained for M = Ge, Sn. The compounds $(h^5-R)TiCl_3$ ($R = C_5H_4C(CH_3)_3$, $C_5H_4Si(CH_3)_3$, Ind) were prepared by reaction of the appropriate sodium salt with a threefold excess of TiCl₄ in boiling xylene. They were isolated by sublimation and purified by recrystallization from pentane. Elemental analyses were carried out at the Analytical Department of this University under the supervision of Mr. A.F. Hamminga.

Mass spectra were run on an AEI MS9 mass spectrometer. Operating conditions: energy 70 eV; resolution 1000; accelerating voltage 8 kV; inlet temperature ca. 140°C. The samples were introduced directly into the ion source using a metal probe. Only peaks corresponding to ⁴⁸Ti are listed in the Tables.

NMR spectra were recorded on a Varian A-60 high resolution instrument. TMS was used as internal standard, except for the Si-containing compounds, where C_6H_6 was used as a reference.

IR spectra were recorded on a Hitachi EPI-G spectrophotometer. The samples were examined as mulls in hexachlorobutadiene (4000-1300 cm⁻¹) and Nujol (1300-400 cm⁻¹). The IR spectrum of the compound $(h^7-C_9H_9)(h^5-C_5H_5)$ -Ti could only be recorded in Nujol, since decomposition occurred in hexachlorobutadiene.

Synthesis of the compounds $(h^7-C_7H_7)(h^5-R)Ti$ and $(h^7-C_7H_6R')(h^5-C_5H_5)Ti$

The reactions were carried out as described for the synthesis of the methyl substituted compounds [2]. Purification was achieved by extraction with pentane, followed by recrystallization from this solvent and sublimation at ca. 120°C/ 0.1 mm Hg. Analytical data, yields and colours are summarized in Table 1.

Our attempts at syntheses of the compounds with R' = CN, OCH_3 were not successful: for R' = CN the starting material $(C_5H_5)TiCl_3$ was recovered and for $R' = OCH_3$ only a small amount of $(h^7-C_7H_7)(h^5-C_5H_5)Ti$ was isolated.

(continued on p. 53)

TABLE 1

ANALYTICAL DATA, YIELDS AND COLOURS OF SOME SANDWICH COMPOUNDS

Compound	Found (ca	alcd.) (%)			Yield (%)	Colour
	с	н	Si	Ti		
(C7H7)(C5H4C(CH3)3)Ti	73.90	7.85		18.37	10	blue
	73.70	7.72		18.31		
· ·	(73.85)	(7.75)		(18.40)		
(C7H7)(C5H4Si(CH3)3)Ti	65.88	7.43	10.04	17.24	10	blue
	65.86	7.49	10.03	17.10		1. A.
	(65.21)	(7.29)	(10.17)	(17.33)	·	
(C7H7)(Ind)Ti	74.94	5.82		18.80	4 .	green
	74.88	5.81		18.59	•	
	(75.60)	(5.55)		(18.85)		
(C-HCCHc)(CcHc)Ti	77.05	5.59		16.84	18	green
	76.98	5.91		16.79	· · · · · ·	. — н
	(77.15)	(5.76)		(17.09)	-	
(CoHo)(CsHs)Ti	73.59	6.40	1	20.13	13	green
	73.26	6.36	1	20.34	:	
	(73.06)	(6.13)		(20.81)		

TABLE 2

Compound	Solvent	$\delta C(7)$ -ring	$\delta C(5)$ -ring	δ substituent	1.
$\mathbf{R} = \mathbf{C}_{5}\mathbf{H}_{4}\mathbf{C}(\mathbf{C}\mathbf{H}_{3})_{3}$	C ₆ D ₆	5.47 s (7)	4.93 m (4)	1.03 s (9)	-
$\mathbf{R} = \mathbf{C}_5 \mathbf{H}_4 \mathrm{Si}(\mathbf{C} \mathbf{H}_3)_3$	$C_6 D_6$	5.48 s (7)	5.15 m (4)	0.16 s (9)	
$\mathbf{R} = \mathbf{Ind}$	$C_6 D_6$	5.27 s (7)	5.12 d (2)	6.72 m (2)	
		and the second	5.32 t (1)	7.18 m ^c	
$\mathbf{R}' = \mathbf{C}_6 \mathbf{H}_5$	C6D6	5,95 m (2)	4.94 s (5)	7.65 m (2)	
		5.50 m (4)		7.25 m (3)	2
	CS ₂	6.06 m (2)	5.10 s (5)	7.92 m (2)	
		5.77 m (4)		7.47 m (3)	

¹H NMR DATA OF THE COMPOUNDS (h⁷-C₇H₇)(h⁵-R)Ti AND (h⁷-C₇H₆R')(h⁵-C₅H₅)Ti^{a,b}

^a Multiplicity: s = singlet, d doublet, t triplet, m multiplet. ^b Relative intensities between brackets. ^c Integration not reliable due to overlap with the signal of benzene.

TABLE 3

MASS SPECTRUM OF (h⁷-C₇H₇)(h⁵-Ind)Ti

m/e	Rel. int. (%)	Ion	m/e	Rel. int. (%)	Ion
254	100	C16H14Ti ⁺	126	19	C6H6Ti ⁺
176	31	C ₁₀ H ₈ Ti ⁺	124	8	C ₆ H ₄ Ti ⁺
174	21	C ₁₀ H ₆ Ti ⁺	116	7	CoH8 ⁺
163	8	C ₉ H ₇ Ti ⁺	115	7	CoH7+
161	6	C ₉ H ₅ Ti ⁺	113	9	C _s H _s Ti ⁺
139	5	C ₇ H ₇ Ti ⁺	91	12	$C_7H_7^+$
137	9	C ₇ H ₅ Ti ⁺	48	32	Ti ⁺
Metast	able peaks:				
122	CicHiaTi ⁺ → CioHa	Ti ⁺			•••••••
62	$C_{16}H_{14}Ti^+ \rightarrow C_6H_6T$	ï ⁺		11. · ·	

TABLE 4

MASS SPECTRUM OF $(h^7-C_7H_6C_6H_5)(h^5-C_5H_5)$ Ti

m/e	Rel. int. (%)	Ion	m/e	Rel. int. (%)	Ion
280	100	C ₁₈ H ₁₆ Ti ⁺	113	12	C5H5Ti ⁺
202	27	$C_{12}H_{10}Ti^{+}$	98	2	$C_4H_2Ti^+$
200	21	$C_{12}H_8Ti^+$	91	1	$C_7 H_7^+$
178	2	C ₁₀ H ₁₀ Ti ⁺	87	4	C ₃ H ₃ Ti ⁺
174	5	C ₁₀ H ₆ Ti ⁺	86	2	$C_3H_2Ti^+$
168	6	$C_9H_{12}Ti^+$	85	2	C ₃ HTi ⁺
167	8	C ₉ H ₁₁ Ti ⁺	78	1	C ₆ H ₆ ⁺
165	3	C ₉ H ₉ Ti ⁺	73	3	C ₂ HTi ⁺
163	2	C ₉ H ₇ Ti ⁺	66	3	$\tilde{C_5H_6}^+$
161	2	C ₉ H ₅ Ti ⁺	65	13	C _s H _s ⁺
154	3	$C_8H_{10}Ti^+$	63	2	C ₅ H ₃ ⁺
153	2	C ₈ H ₉ Ti ⁺	51	2	C ₄ H ₃ ⁺
152	3	C ₈ H ₈ Ti ⁺	50	2	C4H2+
150	3	C8H6T1 ⁺	48	11	Ti ⁺
140	2	C ₁₈ H ₁₆ Ti ⁺⁺	40	2	C ₃ H ₄ ⁺
126	10	C ₆ H ₆ Ti ⁺	39	4	C ₃ H ₃ ⁺
124	7	C ₆ H ₄ Ti ⁺			55
Metas	stable peaks:				
198	$C_{12}H_{10}Ti^+ \rightarrow C_{12}H_{10}Ti^+$	IsTi ⁺	76	C12H10Ti ⁺ → C6H4T	i+
146	$C_{18}H_{16}Ti^+ \rightarrow C_{12}H_{16}$		56	CisHisTi ⁺ → CeHeT	(† 1997)

51

TABLE 5

MASS SPECTRUM OF (h⁷-C₇H₇)(h⁵-C₅H₄C(CH₃)₃)Ti

m/e	Rel. int. (%)	Ion		m/e	Rel. int. (%)	Ion
260	100	C ₁₆ H ₂₀ Ti ⁺		130	5	C ₁₆ H ₂₀ Ti ⁺⁺
245	38	C ₁₅ H ₁₇ Ti ⁺		126	19	C ₆ H ₆ Ti ⁺
241	7	$C_{15}H_{13}Ti^+$		122.5	7	C15H17Ti++
218	3	C ₁₃ H ₁₄ Ti ⁺		113	17	C ₅ H ₅ Ti ⁺
217	9	C ₁₃ H ₁₃ Ti ⁺		108.5	2	C ₁₃ H ₁₃ Ti ⁺⁺
215	3	C ₁₃ H ₁₁ Ti ⁺		99	3	C ₄ H ₃ Ti [†]
204	3	C ₁₂ H ₁₂ Ti ⁺		98	3	C ₄ H ₂ Ti ⁺
202	3	$C_{12}H_{10}Ti^{+}$		91	15	$C_7 H_7^+$
191	2	C11H11Ti ⁺		87	9	C ₃ H ₃ Ti ⁺
178	2	C ₁₀ H ₁₀ Ti ⁺		86	6	C ₃ H ₂ Ti ⁺
176	2	C ₁₀ H ₈ Ti ⁺		85	3	C ₃ HTi ⁺
166	13	CoH10Ti ⁺		78	2	C ₆ H ₆ ⁺
163	13	C ₀ H ₇ Ti ⁺		73	5	C ₂ HTi ⁺
153	18	C ₈ H ₉ Ti ⁺		65	.5	C ₅ H ₅ ⁺
151	14	C ₈ H ₇ Ti ⁺		48	12	Ti ⁺
150	19	C ₈ H ₆ Ti ⁺		41	4	C2H5 ⁺
139	20	C7H7Ti ⁺		39	3	C3H3 ⁺
137	26	C7H5Ti ⁺			_	-3-3
Metastab	le peaks:					
231	$C_{16}H_{20}Ti^+ \rightarrow C_{14}$	5H17Ti ⁺	96	$C_{15}H_{17}T$	i ⁺ → C ₈ HoTi ⁺	
192	$C_{15}H_{13}Ti^{+} \rightarrow C_{13}H_{11}Ti^{+}$		90	C ₁₃ H ₁₃ Ti ⁺ → C ₇ H ₇ Ti ⁺		
	$C_{15}H_{17}Ti^+ \rightarrow C_{12}$	H13Ti ⁺		10 10	•••	
181	C16H20Ti ⁺ → C1	aH1 aTi ⁺	78	CioHioT	i⁺→ C ₆ H ₆ Ti⁺	
106	C ₁₆ H ₂₀ Ti ⁺ → Col	HIOTI ⁺		12 12-		
	$C_{13}H_{11}Ti^+ \rightarrow C_8$	H7Ti ⁺				

TABLE 6

MASS SPECTRUM OF $(h^7 - C_7 H_7)(h^5 - C_5 H_4 Si(CH_3)_3)Ti$

m/e	Rel. int. (%)	Ion	m/e	Rel. int. (%)	Ion
276	100	SiC ₁₅ H ₂₀ Ti ⁺	130.5	10	SiC ₁₄ H ₁₇ Ti ⁺⁺
261	9	SiC ₁₄ H ₁₇ Ti ⁺	126	9	C ₆ H ₆ Ti ⁺
257	1	SiC14H13Ti ⁺	118	1	SiC ₃ H ₆ Ti ⁺
234	2	SiC ₁₂ H ₁₄ Ti ⁺	116.5	1	SiC ₁₂ H ₁₃ Ti ⁺⁺
233	2	SiC ₁₂ H ₁₃ Ti ⁺	113	4	C ₅ H ₅ Ti ⁺
215	[,] 1	$C_{13}H_{11}Ti^{+}$	92	2	SiC ₅ H ₄ ⁺
204	8	$C_{12}H_{12}Ti^+$	91	6	$C_7 H_7^+$
		SiC ₁₀ H ₈ Ti ⁺	87	2	C ₃ H ₃ Ti ⁺
202	1	$C_{12}H_{10}Ti^{+}$	86	2	C ₃ H ₂ Ti ⁺
196	8	SiC ₉ H ₁₂ Ti ⁺	85	1	C ₃ HTi ⁺
194	2	SiC ₉ H ₁₀ Ti ⁺	78	2	$C_6 H_6^+$
192	2	SiC ₉ H ₈ Ti ⁺	73	9	C ₂ HTi ⁺
180	2	SiC ₈ H ₈ Ti ⁺			SiC ₃ H ₉ ⁺
178	2	C ₁₀ H ₁₀ Ti ⁺	66	1	SiC ₃ H ₂ ⁺
		SiC ₈ H ₆ Ti ⁺	65	2	C ₅ H ₅ ⁺
168	3	SiC ₇ H ₈ Ti ⁺	48	5	Ti ⁺
166	3	C ₉ H ₁₀ Ti ⁺	45	1	SiCH5 ⁺
		SiC7H6Ti ⁺	44	2	SiCH4 ⁺
165	2	SiC7H5Ti ⁺	43	1	SiCH ₃ ⁺
153	3	C ₈ H ₉ Ti ⁺			
·		SiC ₆ H ₅ Ti ⁺	40	4	SiC ⁺
140	3	SiC ₅ H ₄ Ti ⁺			C ₃ H ₄ ⁺
139	1	C7H7Ti ⁺	39	2	C ₃ H ₃ ⁺
138	3	SiC ₁₅ H ₂₀ Ti ⁺⁺			
137	1	C7H5Ti ⁺			
Metaste	able peaks:				
247 SIC ₁₅ H ₂₀ Ti ⁺ \rightarrow SiC ₁₄ H ₁₇ Ti ⁺			142 SiC ₉	H ₁₀ Ti → SiC ₇ H ₆ Ti	•
212	$SiC_{14}H_{17}Ti' \rightarrow SiC_{1}$	² H ₁₅ Ti'	78 C ₁₂]	H ₁₂ Ti ⁺ → C ₆ H ₆ Ti ⁺	
192	SiC9H12Ti → SiC9I	110Ti			

Synthesis of the compound $(h^7 - C_9 H_9)(h^5 - C_5 H_5)Ti$

To a well-stirred suspension of $(C_5H_5)TiCl_3$ (1.98 g, 9.0 mmol) in 50 ml of THF, a solution of C_9H_9Li (26 mmol) in 20 ml of THF was slowly added at $-20^{\circ}C$. During the addition of C_9H_9Li the colour of the reaction mixture changed to green. After stirring for three hours at room temperature, the solvent was removed under reduced pressure. The compound was purified by recrystallization from pentane. Analytical data and yields are given in Table 1.

The compound $(h^7-C_9H_9)(h^5-C_5H_5)$ Ti was also prepared by reaction of (C_5H_5) TiCl₂ with 2 equivalents of C_9H_9 Li. Attempted synthesis by reaction of (C_5H_5) TiCl₃ with 3 equivalents of i- C_3H_7 MgBr in the presence of C_9H_{10} failed; the products obtained from the reaction mixture could not be identified.

Results and discussion

In a previous paper we described the compound $(h^7-C_7H_7)(h^5-C_5H_5)$ Ti [1]. The proposed sandwich structure of the compound has been confirmed by X-ray analysis [3]. The properties of the ring-substituted compounds $(h^7-C_7H_7)$ (h^5-R) Ti and $(h^7-C_7H_6C_6H_5)(h^5-C_5H_5)$ Ti indicate that they have analogous structures. Their IR spectra (Fig. 1b-e) show that the absorption bands of the unsubstituted rings are hardly changed whereas those of the substituted rings are. The NMR spectra (Table 2) show that the protons of the unsubstituted rings are equivalent as are the methyl protons of the $(CH_3)_3C$ — and $(CH_3)_3Si$ — groups. The protons of the substituted rings give rise to multiplets and the protons of the five-membered ring of $(h^7-C_7H_7)(h^5-Ind)$ Ti to a doublet and a triplet, as expected.

The mass spectra of the compounds $(h^7-C_7H_6R)(h^5-C_5H_4R)$ Ti $(R = H, CH_3)$ indicate that substantial proportions of the compounds rearrange to ions of dibenzenetitanium derivatives upon electron impact [2]. This rearrangement occurs by transfer of a CH or CR fragment from the seven- to the five-membered ring. A similar rearrangement is observed in the mass spectra of the complexes $(h^7-C_7H_7)(h^5-Ind)$ Ti (Table 3) and $(h^5-C_7H_6C_6H_5)(h^5-C_5H_5)$ Ti (Table 4). Migration of a CH fragment from the seven- to the five-membered ring of the indenyl group in $(h^7-C_7H_7)(h^5-Ind)$ Ti⁺ gives the benzene—naphthalene—titanium ion, $(C_6H_6)(C_{10}H_8)$ Ti⁺. This ion appears to break down either by loss of a benzene fragment to give the naphthalene—titanium ion, $(C_{10}H_8)$ Ti⁺, or by loss of a naphthalene fragment giving the benzene—titanium ion, (C_6H_6) Ti⁺.

The mass spectrum of the compound $(h^7 \cdot C_7 H_6 C_6 H_5)(h^5 \cdot C_5 H_5)$ Ti shows the benzene—diphenyl—titanium ion $(C_6 H_6)(C_6 H_5)_2$ Ti⁺, formed by migration of either a CH or a $CC_6 H_5$ fragment from the seven- to the five-membered ring. This ion breaks down either by loss of benzene to give the diphenyl—titanium ion, $(C_6 H_5)_2$ Ti⁺, or by loss of a diphenyl group resulting in the benzene—titanium ion, $(C_6 H_6)$ Ti⁺. A similar rearrangement could not be established with certainty in the mass spectra of the complexes $(h^7 \cdot C_7 H_7)(h^5 \cdot C_5 H_4 R)$ Ti $(R = C(CH_3)_3$, Si(CH₃)₃) (Table 5 and 6). The ions $(C_6 H_5 R)$ Ti⁺ and $C_6 H_5 R^+$ are not observed in these spectra. The presence of the ion $C_{12}H_{12}$ Ti⁺ in both spectra and the break-down of this ion by loss of $C_6 H_6$ to give the ion $(C_6 H_6)$ Ti⁺ indicate that a CH group migrates from the seven- to the five-membered ring. However, it is not clear whether this occurs in the parent ions or in fragmentation products like

Fig. 1. Infrared spectra of (a) $C_7H_7TiC_5H_5$, (b) $C_7H_7TiC_5H_4C(CH_3)_3$, (c) $C_7H_7TiC_5H_4Si(CH_3)_3$, (d) C_7H_7TiInd and (e) $C_7H_6C_6H_5TiC_5H_5$ in hexachlorobutadiene (4000-1300 cm⁻¹) and Nujol (1300-400 cm⁻¹) and of (f) $C_9H_9TiC_5H_5$ in Nujol (4000-400 cm⁻¹).

 $(C_7H_7)(C_5H_5)Ti^{\dagger}$, which arise from the parent ions by the loss of the substituent in the five-membered ring. In view of the mass spectra of the complexes $(h^5-C_5H_4R)TiCl_3$ (R = C(CH₃)₃, Si(CH₃)₃) and the mass spectral data of the complex $[C_6H_5Si(CH_3)_3]_2Cr$ [13], the latter possibility seems to be the more likely.

By reaction of $(C_{5}H_{5})TiCl_{3}$ or $(C_{5}H_{5})TiCl_{2}$ with 3 or 2 equivalents of $C_{9}H_{9}Li$, respectively, a green diamagnetic compound was obtained which is very reactive, particularly in solution. Elemental and mass-spectral analyses indicate that the molecular formula of the compound is $C_{14}H_{14}Ti$.

The IR spectrum of the compound shows the C_5H_5 ring absorptions in the usual range (Fig. 1f). At ca. 1640 cm⁻¹ a medium to strong absorption band is found, indicating the presence of a localized C=C bonding in the molecule. Further, the spectrum strongly resembles that of a sandwich compound containing a substituent in the C_7H_7 ring [2].

The NMR spectrum of the compound shows a singlet at δ 4.6 ppm with relative intensity of 5 due to the protons of the C₅H₅ ring. At δ 4.8 ppm a doublet (J = 1.2 Hz) with an intensity of 2 is found. This signal probably belongs to the protons of a non-coordinated double bond. At somewhat lower field (ca. 5.0-6.6 ppm) a number of resonances with total intensity of 7 are found. The mass spectrum of the compound (Table 7) shows that the parent ion,

같은 것 같은 것은 것은 것은 것은 것을 것 같아요. 것은 것은 것을 것 같아요.

MASS	MASS SPECTRUM OF (h '-C9H9)(h '-C5H5)Ti						
m/e	Rel. int. (%)	Ion	m/e	Rel. int. (%)	Ion		
230	100	C ₁₄ H ₁₄ Ti ⁺	117	10	C ₉ H ₉ ⁺		
215	5	$C_{13}H_{11}Ti^{\dagger}$	113	50	C ₅ H ₅ Ti ⁺		
204	40	$C_{12}H_{12}Ti^{+}$	102	4	C ₈ H ₆ ⁺		
178	10	$C_{10}H_{10}Ti^{+}$	91	6	$C_{7}H_{7}^{+}$		
163	9	C ₉ H ₇ Ti ⁺	87	12	C ₃ H ₃ Ti ⁺		
152	34	C ₈ H ₈ Ti ⁺	78	4	$C_6 H_6^+$		
137	5	C7H7Ti ⁺	48	11	Ti ⁺		
126	16	C ₆ H ₆ Ti ⁺					
Metasta	ible peaks:						
181	$C_{14}H_{14}Ti^+ \rightarrow C_{12}H_1$	₂ Ti ⁺ 84	C ₈ H ₈ Ti ⁺ →	C5H5Ti ⁺			
155	$C_{12}H_{12}Ti^+ \rightarrow C_{10}H_1$	₀ Ti ⁺ 78	C ₁₂ H ₁₂ Ti ⁺ -	→ C ₆ H ₆ Ti ⁺			

22436	SDECODIN	OF INT	Callay	5 C-H-)mi
MASS	SPECIRUM	Or (n		-0686311

TABLE 7

 $C_{14}H_{14}Ti^{\dagger}$, breaks down by elimination of $C_{2}H_{2}$, giving the ion $C_{12}H_{12}Ti^{\dagger}$. The fragmentation of this ion occurs via two routes. In the first route C_2H_2 is again eliminated, giving the ion $C_{10}H_{10}Ti^{\dagger}$ which probably breaks down by successive elimination of C_2H_2 and C_3H_3 , resulting in the ion $C_5H_5Ti^+$. In the second, more interesting, route a rearrangement of the ion $C_{12}H_{12}Ti^{\dagger}$ to the ion $(C_6H_6)_2Ti^{\dagger}$ occurs, which ion breaks down by elimination of C_6H_6 to give the ion $(C_6H_6)Ti^+$. As has been seen, such a rearrangement is characteristic for $(h^7-C_7H_7)(h^5-C_5H_5)Ti$ and derivatives suggesting that the $C_{0}H_{0}$ group acts as a heptahapto cyclononatetraenyl ligand.

From the combined evidence it may be concluded that $C_{14}H_{14}T_{14}$ is a sandwich compound, $(h^7-C_9H_9)(h^5-C_5H_5)$ Ti. Only 7 of the 9 π -electrons of the C₉H₉ ring are involved in bonding to Ti, resulting in a 16-electron configuration for the metal, which is compatible with the observed diamagnetism of the compound.

Acknowledgements

The authors are much indebted to Prof. Dr. F. Jellinek for his stimulating interest, to Mr. A. Kiewiet for recording the mass spectra, to Mr. J. Knol for the preparation of $(h^{5}-Ind)TiCl_{3}$ and to Drs. A. de Boer for the preparation of $(h^{5}-C_{5}H_{4}C(CH_{3})_{3})$ TiCl₃. We thank the Institute for Organic Chemistry T.N.O. Utrecht, The Netherlands, for kindly providing the compounds (CH₃)₃GeCl and $(CH_3)_3$ SnCl. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

- 1 H.O. van Oven and H.J. de Liefde Meijer, J. Organometal. Chem., 23 (1970) 159.
- 2 H.T. Verkouw and H.O. van Oven, J. Organometal Chem., 59 (1973) 259.
- 3 J.D. Zeinstra and J.L. de Boer, J. Organometal Chem., 54 (1973) 207.
- 4 H.O. van Oven and H.J. de Liefde Meijer, J. Organometal. Chem., 31 (1971) 71.
- 5 W. von E. Doering and L.H. Knox, J. Amer. Chem. Soc., 75 (1953) 297; 76 (1954) 3203; 79 (1957) 352.

56

6 J. Müller and B. Mertschenk, J. Organometal. Chem., 34 (1972) 165.

7 R.D. Gorsich, J. Amer. Chem. Soc., 80 (1958) 4744.

8 R.S.P. Coutts, R.L. Martin and P.C. Wailes, Aust. J. Chem., 24 (1971) 2533.

9 A. Davison and P.E. Rakita, Inorg. Chem., 9 (1970) 289.

10 L.T. Reynolds and G. Wilkinson, J. Inorg. Nucl. Chem., 9 (1959) 86.

11 T. Katz and P.J. Garratt, J. Amer. Chem. Soc., 86 (1964) 5194.

12 E.A. LaLancette and R.E. Benson, J. Amer. Chem. Soc., 87 (1965) 1941.

13 C. Elschenbroich, J. Organometal. Chem., 22 (1970) 677.